template<typename 类型参数1 , typename 类型参数2 , …> class 类名{
//TODO:
};
template<typename T1, typename T2> //这里不能有分号
class Point{
public:
Point(T1 x, T2 y): m_x(x), m_y(y){ }
public:
T1 getX() const; //获取x坐标
void setX(T1 x); //设置x坐标
T2 getY() const; //获取y坐标
void setY(T2 y); //设置y坐标
private:
T1 m_x; //x坐标
T2 m_y; //y坐标
};
x 坐标和 y 坐标的数据类型不确定,借助类模板可以将数据类型参数化,这样就不必定义多个类了。
注意:模板头和类头是一个整体,可以换行,但是中间不能有分号。上面的代码仅仅是类的声明,我们还需要在类外定义成员函数。在类外定义成员函数时仍然需要带上模板头,格式为:
template<typename 类型参数1 , typename 类型参数2 , …>
返回值类型 类名<类型参数1 , 类型参数2, ...>::函数名(形参列表){
//TODO:
}
template<typename T1, typename T2> //模板头
T1 Point<T1, T2>::getX() const /*函数头*/ {
return m_x;
}
template<typename T1, typename T2>
void Point<T1, T2>::setX(T1 x){
m_x = x;
}
template<typename T1, typename T2>
T2 Point<T1, T2>::getY() const{
return m_y;
}
template<typename T1, typename T2>
void Point<T1, T2>::setY(T2 y){
m_y = y;
}
请读者仔细观察代码,除了 template 关键字后面要指明类型参数,类名 Point 后面也要带上类型参数,只是不加 typename 关键字了。另外需要注意的是,在类外定义成员函数时,template 后面的类型参数要和类声明时的一致。
Point<int, int> p1(10, 20); Point<int, float> p2(10, 15.5); Point<float, char*> p3(12.4, "东经180度");与函数模板不同的是,类模板在实例化时必须显式地指明数据类型,编译器不能根据给定的数据推演出数据类型。
Point<float, float> *p1 = new Point<float, float>(10.6, 109.3);
Point<char*, char*> *p = new Point<char*, char*>("东经180度", "北纬210度");
需要注意的是,赋值号两边都要指明具体的数据类型,且要保持一致。下面的写法是错误的://赋值号两边的数据类型不一致 Point<float, float> *p = new Point<float, int>(10.6, 109); //赋值号右边没有指明数据类型 Point<float, float> *p = new Point(10.6, 109);
#include <iostream>
using namespace std;
template<class T1, class T2> //这里不能有分号
class Point{
public:
Point(T1 x, T2 y): m_x(x), m_y(y){ }
public:
T1 getX() const; //获取x坐标
void setX(T1 x); //设置x坐标
T2 getY() const; //获取y坐标
void setY(T2 y); //设置y坐标
private:
T1 m_x; //x坐标
T2 m_y; //y坐标
};
template<class T1, class T2> //模板头
T1 Point<T1, T2>::getX() const /*函数头*/ {
return m_x;
}
template<class T1, class T2>
void Point<T1, T2>::setX(T1 x){
m_x = x;
}
template<class T1, class T2>
T2 Point<T1, T2>::getY() const{
return m_y;
}
template<class T1, class T2>
void Point<T1, T2>::setY(T2 y){
m_y = y;
}
int main(){
Point<int, int> p1(10, 20);
cout<<"x="<<p1.getX()<<", y="<<p1.getY()<<endl;
Point<int, char*> p2(10, "东经180度");
cout<<"x="<<p2.getX()<<", y="<<p2.getY()<<endl;
Point<char*, char*> *p3 = new Point<char*, char*>("东经180度", "北纬210度");
cout<<"x="<<p3->getX()<<", y="<<p3->getY()<<endl;
return 0;
}
运行结果:
#include <iostream>
#include <cstring>
using namespace std;
template <class T>
class CArray
{
int size; //数组元素的个数
T *ptr; //指向动态分配的数组
public:
CArray(int s = 0); //s代表数组元素的个数
CArray(CArray & a);
~CArray();
void push_back(const T & v); //用于在数组尾部添加一个元素v
CArray & operator=(const CArray & a); //用于数组对象间的赋值
T length() { return size; }
T & operator[](int i)
{//用以支持根据下标访问数组元素,如a[i] = 4;和n = a[i]这样的语句
return ptr[i];
}
};
template<class T>
CArray<T>::CArray(int s):size(s)
{
if(s == 0)
ptr = NULL;
else
ptr = new T[s];
}
template<class T>
CArray<T>::CArray(CArray & a)
{
if(!a.ptr) {
ptr = NULL;
size = 0;
return;
}
ptr = new T[a.size];
memcpy(ptr, a.ptr, sizeof(T ) * a.size);
size = a.size;
}
template <class T>
CArray<T>::~CArray()
{
if(ptr) delete [] ptr;
}
template <class T>
CArray<T> & CArray<T>::operator=(const CArray & a)
{ //赋值号的作用是使"="左边对象里存放的数组,大小和内容都和右边的对象一样
if(this == & a) //防止a=a这样的赋值导致出错
return * this;
if(a.ptr == NULL) { //如果a里面的数组是空的
if( ptr )
delete [] ptr;
ptr = NULL;
size = 0;
return * this;
}
if(size < a.size) { //如果原有空间够大,就不用分配新的空间
if(ptr)
delete [] ptr;
ptr = new T[a.size];
}
memcpy(ptr,a.ptr,sizeof(T)*a.size);
size = a.size;
return *this;
}
template <class T>
void CArray<T>::push_back(const T & v)
{ //在数组尾部添加一个元素
if(ptr) {
T *tmpPtr = new T[size+1]; //重新分配空间
memcpy(tmpPtr,ptr,sizeof(T)*size); //拷贝原数组内容
delete []ptr;
ptr = tmpPtr;
}
else //数组本来是空的
ptr = new T[1];
ptr[size++] = v; //加入新的数组元素
}
int main()
{
CArray<int> a;
for(int i = 0;i < 5;++i)
a.push_back(i);
for(int i = 0; i < a.length(); ++i)
cout << a[i] << " ";
return 0;
}
版权说明:Copyright © 广州松河信息科技有限公司 2005-2025 版权所有 粤ICP备16019765号
广州松河信息科技有限公司 版权所有